2,503 research outputs found

    A steady, radiative-shock method for computing X-ray emission from colliding stellar winds in close, massive-star binaries

    Get PDF
    We present a practical, efficient, semianalytic formalism for computing steady state X-ray emission from radiative shocks between colliding stellar winds in relatively close ( orbital period up to order tens of days) massive-star, binary systems. Our simplified approach idealizes the individual wind flows as smooth and steady, ignoring the intrinsic instabilities and associated structure thought to occur in such flows. By also suppressing thin-shell instabilities for wind-collision radiative shocks, our steady state approach avoids the extensive structure and mixing that has thus far precluded reliable computation of X-ray emission spectra from time- dependent hydrodynamical simulations of close-binary, wind- collision systems; but in ignoring the unknown physical level of such mixing, the luminosity and hardness of X-ray spectra derived here represent upper limits to what is possible for a given set of wind and binary parameters. A key feature of our approach is the separation of calculations for the small-scale shock-emission from the ram-pressure-balance model for determining the large-scale, geometric form of the wind-wind interaction front. Integrating the localized shock emission over the full interaction surface and using a warm-absorber opacity to take account of attenuation by both the smooth wind and the compressed, cooled material in the interaction front, the method can predict spectra for a distant observer at any arbitrary orbital inclination and phase. We illustrate results for a sample selection of wind, stellar, and binary parameters, providing both full X-ray light curves and detailed spectra at selected orbital phases. The derived spectra typically have a broad characteristic form, and by synthetic processing with the standard XSPEC package, we demonstrate that they simply cannot be satisfactorily fitted with the usual attenuated single-or two-temperature thermal-emission models. We conclude with a summary of the advantages and limitations of our approach and outline its potential application for interpreting detailed X- ray observations from close, massive-star binary systems

    Role of tumour necrosis factor gene polymorphisms (-308 and -238) in breast cancer susceptibility and severity

    Get PDF
    Introduction Genetic polymorphisms in the promoter region of the tumour necrosis factor (TNF) gene can regulate gene expression and have been associated with inflammatory and malignant conditions. We have investigated two polymorphisms in the promoter of the TNF gene (-308 G>A and -238 G>A) for their role in breast cancer susceptibility and severity by means of an allelic association study. Methods Using a case–control study design, breast cancer patients (n = 709) and appropriate age-matched and sex-matched controls obtained from the Breast Screening Unit (n = 498) were genotyped for these TNF polymorphisms, using a high-throughput allelic discrimination method. Results Allele frequencies for both polymorphisms were similar in both breast cancer cases and controls. However, the -308 polymorphism was found to be associated with vascular invasion in breast tumours (P = 0.024). Comparison with other standard prognostic indices did not show any association for either genotype. Conclusions We demonstrated no association between the -308G>A polymorphism and the -238G>A polymorphism in the promoter region of TNF and susceptibility to breast cancer, in a large North European population. However, the -308 G>A polymorphism was found to be associated with the presence of vascular invasion in breast tumours

    Inference of hot star density stream properties from data on rotationally recurrent DACs

    Get PDF
    The information content of data on rotationally periodic recurrent discrete absorption components (DACs) in hot star wind emission lines is discussed. The data comprise optical depths tau(w,phi) as a function of dimensionless Doppler velocity w=(Deltalambda/lambda(0))(c/v(infinity)) and of time expressed in terms of stellar rotation angle phi. This is used to study the spatial distributions of density, radial and rotational velocities, and ionisation structures of the corotating wind streams to which recurrent DACs are conventionally attributed. The simplifying assumptions made to reduce the degrees of freedom in such structure distribution functions to match those in the DAC data are discussed and the problem then posed in terms of a bivariate relationship between tau(w, phi) and the radial velocity v(r)(r), transverse rotation rate Omega(r) and density rho(r, phi) structures of the streams. The discussion applies to cases where: the streams are equatorial; the system is seen edge on; the ionisation structure is approximated as uniform; the radial and transverse velocities are taken to be functions only of radial distance but the stream density is allowed to vary with azimuth. The last kinematic assumption essentially ignores the dynamical feedback of density on velocity and the relationship of this to fully dynamical models is discussed. The case of narrow streams is first considered, noting the result of Hamann et al. (2001) that the apparent acceleration of a narrow stream DAC is higher than the acceleration of the matter itself, so that the apparent slow acceleration of DACs cannot be attributed to the slowness of stellar rotation. Thus DACs either involve matter which accelerates slower than the general wind flow, or they are formed by structures which are not advected with the matter flow but propagate upstream (such as Abbott waves). It is then shown how, in the kinematic model approximation, the radial speed of the absorbing matter can be found by inversion of the apparent acceleration of the narrow DAC, for a given rotation law. The case of broad streams is more complex but also more informative. The observed tau(w,phi) is governed not only by v(r)(r) and Omega(r) of the absorbing stream matter but also by the density profile across the stream, determined by the azimuthal (phi(0)) distribution function F-0(phi(0)) of mass loss rate around the stellar equator. When F-0(phi(0)) is fairly wide in phi(0), the acceleration of the DAC peak tau(w, phi) in w is generally slow compared with that of a narrow stream DAC and the information on v(r)(r), Omega(r) and F- 0(phi(0)) is convoluted in the data tau(w, phi). We show that it is possible, in this kinematic model, to recover by inversion, complete information on all three distribution functions v(r)(r), Omega(r) and F-0(phi(0)) from data on tau(w, phi) of sufficiently high precision and resolution since v(r)(r) and Omega(r) occur in combination rather than independently in the equations. This is demonstrated for simulated data, including noise effects, and is discussed in relation to real data and to fully hydrodynamic models

    A Narrative Review of Medication-Related Clinical Decision Support

    Get PDF
    Objectives: A key element of the implementation and on-going use of an electronic prescribing (ePrescribing) system is ensuring that users are, and remain, sufficiently trained to use the system. Studies have suggested that insufficient training is associated with suboptimal use. However, it is not clear from these studies how clinicians are trained to use ePrescribing systems or the effectiveness of different approaches. We sought to describe the various approaches used to train qualified prescribers on ePrescribing systems and to identify whether users were educated about the pitfalls and challenges of using these systems. Methods: We performed a literature review, using a systematic approach across three large databases: Cumulative Index Nursing and Allied Health Literature (CINAHL), Embase and Medline were searched for relevant English language articles. Articles that explored the training of qualified prescribers on ePrescribing systems in a hospital setting were included. Key Findings: Our search of ‘all training’ approaches returned 1,155 publications, of which seven were included. A separate search of ‘online’ training found three relevant publications. Training methods in the ‘all training’ category included clinical scenarios, demonstrations and assessments. Regarding ‘online’ training approaches; a team at the University of Victoria in Canada developed a portal containing simulated versions of electronic health records, where individuals could prescribe for fictitious patients. Educating prescribers about the challenges and pitfalls of electronic systems was rarely discussed. Conclusions: A number of methods are used to train prescribers; however the lack of papers retrieved suggests a need for additional studies to inform training methods

    Microglia-derived TNFα induces apoptosis in neural precursor cells via transcriptional activation of the Bcl-2 family member Puma

    Get PDF
    Neuroinflammation is a common feature of acute neurological conditions such as stroke and spinal cord injury, as well as neurodegenerative conditions such as Parkinson’s disease, Alzheimer’s disease, and amyotrophic lateral sclerosis. Previous studies have demonstrated that acute neuroinflammation can adversely affect the survival of neural precursor cells (NPCs) and thereby limit the capacity for regeneration and repair. However, the mechanisms by which neuroinflammatory processes induce NPC death remain unclear. Microglia are key mediators of neuroinflammation and when activated to induce a pro-inflammatory state produce a number of factors that could affect NPC survival. Importantly, in the present study we demonstrate that tumor necrosis factor α (TNFα) produced by lipopolysaccharide-activated microglia is necessary and sufficient to trigger apoptosis in mouse NPCs in vitro. Furthermore, we demonstrate that microglia-derived TNFα induces NPC apoptosis via a mitochondrial pathway regulated by the Bcl-2 family protein Bax. BH3-only proteins are known to play a key role in regulating Bax activation and we demonstrate that microglia-derived TNFα induces the expression of the BH3-only family member Puma in NPCs via an NF-jB-dependent mechanism. Specifically, we show that NF-jB is activated in NPCs treated with conditioned media from activated microglia and that Puma induction and NPC apoptosis is blocked by the NF-jB inhibitor BAY-117082. Importantly, we have determined that NPC apoptosis induced by activated microglia-derived TNFα is attenuated in Puma-deficient NPCs, indicating that Puma induction is required for NPC death. Consistent with this, we demonstrate that Puma-deficient NPCs exhibit an B13-fold increase in survival as compared with wild-type NPCs following transplantation into the inflammatory environment of the injured spinal cord in vivo. In summary, we have identified a key signaling pathway that regulates neuroinflammation induced apoptosis in NPCs in vitro and in vivo that could be targeted to promote regeneration and repair in diverse neurological conditions

    Effect of core cross-linking on the physical properties of poly(dimethylsiloxane)-based diblock copolymer worms prepared in silicone oil

    Get PDF
    A trithiocarbonate-capped poly(dimethylsiloxane) (PDMS) precursor is chain-extended via reversible addition–fragmentation chain transfer dispersion polymerization of 2-(dimethylamino)ethyl methacrylate (DMA) in decamethylcyclopentasiloxane (D5) silicone oil at 90 °C. For a fixed mean degree of polymerization (DP) of 66 for the PDMS steric stabilizer block, targeting core-forming PDMA block DPs of between 105 and 190 enables the preparation of either well-defined worms or vesicles at a copolymer concentration of 25% w/w. The as-synthesized linear PDMS66–PDMA100 worms exhibit thermoresponsive behavior in D5, undergoing a worm-to-sphere transition on heating to 100 °C. Variable temperature 1H NMR spectroscopy indicates that this thermal transition is driven by reversible solvent plasticization of the PDMA cores. This change in copolymer morphology is characterized by transmission electron microscopy (TEM) studies, variable temperature dynamic light scattering and small-angle X-ray scattering experiments. Oscillatory rheology studies indicate that degelation occurs at 32 °C, but shear-induced polarized light imaging measurements suggest that full conversion of worms into spheres requires significantly higher temperatures (∼110 °C). 1,2-Bis(2-iodoethoxy)ethane (BIEE) is evaluated as a cross-linker for PDMS66–PDMAx diblock copolymer nano-objects in D5. This bifunctional reagent quaternizes the tertiary amine groups on the DMA residues within the worm cores, introducing cross-links via the Menshutkin reaction. TEM studies confirm that such covalently-stabilized worms no longer undergo a worm-to-sphere transition when heated to 100 °C. Kinetic studies performed on PDMS66–PDMA176 vesicles suggest that cross-linking requires approximately 13 h at 20 °C to ensure that these nano-objects remain intact when dispersed in chloroform, which is a good solvent for both blocks. Oscillatory rheology studies of a PDMS66–PDMA100 worm gel indicated that covalent stabilization using a BIEE/DMA molar ratio of 0.15 increased its dynamic elastic modulus (G′) by almost two orders of magnitude. Furthermore, such cross-linked worms exhibit a much lower critical gelation concentration (∼2% w/w) compared to that of the linear precursor worms (∼12% w/w)

    Use of electrical impedance spectroscopy for intraoperative tissue differentiation during thyroid and parathyroid surgery

    Get PDF
    Background Electrical impedance (EI) measures tissue resistance to alternating current across several frequencies and may help identify tissue type. A recent rabbit model demonstrated that electrical impedance spectroscopy (EIS) may facilitate identification of parathyroid glands and potentially improve outcomes following surgery. This study looks at the EI patterns of soft tissues in the human neck to determine whether parathyroid tissue can be accurately identified. Methods This was a phase 1, single-arm interventional study involving 56 patients undergoing thyroid and/or parathyroid surgery. Up to 12 EI readings were taken from in vivo and ex vivo thyroid and parathyroid glands, adipose tissue and muscle of each patient. Each reading consists of a series of measurements over 14 frequencies from each tissue. EI patterns were analysed. Two patients were excluded due to data loss due to device malfunction. Results The median age of participants was 53.5 (range 20–85) years. Thirty-five participants had surgery for thyroid pathology, 17 for parathyroid pathology and four for both. Six hundred and six EIS spectra were reviewed for suitability. One hundred and eighty-four spectra were rejected leaving 422 spectra for analysis. The impedance patterns of the soft tissues differed by histological type. The EI ratio of low (152 Hz) to high (312 kHz) frequencies demonstrated a significant difference between the soft tissues (p = 0.006). Using appropriate thresholds, parathyroid tissue can be distinguished from thyroid tissue with a sensitivity of 76% and specificity of 60%. Conclusions This study demonstrates the feasibility of using EIS to aid parathyroid identification and preservation. Further changes to the device and modelling of the EI patterns across the range of frequencies may improve accuracy and facilitate intraoperative use

    Responses of quark condensates to the chemical potential

    Get PDF
    The responses of quark condensates to the chemical potential, as a function of temperature T and chemical potential \mu, are calculated within the Nambu--Jona-Lasinio (NJL) model. We compare our results with those from the recent lattice QCD simulations [QCD-TARO Collaboration, Nucl. Phys. B (Proc. Suppl.) 106, 462 (2002)]. The NJL model and lattice calculations show qualitatively similar behavior, and they will be complimentary ways to study hadrons at finite density. The behavior above T_c requires more elaborated analyses.Comment: 3 pages, 2 figs, based on a contribution to the Prof. Osamu Miyamura memorial symposium, Hiroshima University, Nov. 16-17, 2001; slightly revised, accepted for publication in Physical Review

    Chiral symmetry breaking in hot matter

    Full text link
    This series of three lectures covers (a) a basic introduction to symmetry breaking in general and chiral symmetry breaking in QCD, (b) an overview of the present status of lattice data and the knowlegde that we have at finite temperature from chiral perturbation theory. (c) Results obtained from the Nambu--Jona-Lasinio model describing static mesonic properties are discussed as well as the bulk thermodynamic quantities. Divergences that are observed in the elastic quark-antiquark scattering cross-section, reminiscent of the phenomenon of critical opalescence in light scattering, is also discussed. (d) Finally, we deal with the realm of systems out of equilibrium, and examine the effects of a medium dependent condensate in a system of interacting quarks.Comment: 62 LaTex pages, incorporating 23 figures. Lectures given at the eleventh Chris-Engelbrecht Summer School in Theoretical Physics, 4-13 February, 1998, to be published by Springer Verla

    Insensitivity of the elastic proton-nucleus reaction to the neutron radius of 208Pb

    Full text link
    The sensitivity--or rather insensitivity--of the elastic proton-nucleus reaction to the neutron radius of 208Pb is investigated using a non-relativistic impulse-approximation approach. The energy region (Tlab=500 MeV and Tlab=800 MeV) is selected so that the impulse approximation may be safely assumed. Therefore, only free nucleon-nucleon scattering data are used as input for the optical potential. Further, the optical potential includes proton and neutron ground-state densities that are generated from accurately-calibrated models. Even so, these models yield a wide range of values (from 0.13 fm to 0.28 fm) for the poorly known neutron skin thickness in 208Pb. An excellent description of the experimental cross section is obtained with all neutron densities. We have invoked analytic insights developed within the eikonal approximation to understand the insensitivity of the differential cross section to the various neutron densities. As the diffractive oscillations of the cross sections are controlled by the matter radius of the nucleus, the large spread in the neutron skin among the various models gets diluted into a mere 1.5% difference in the matter radius. This renders ineffective the elastic reaction as a precision tool for the measurement of neutron radii.Comment: 17 pages with 5 figure
    • …
    corecore